Óbuda University		Institute of Machine Design and Safety	
Donát Bánki Faculty of Mechanical and Safety Engineering		Engineering	
Name of the subject: Mechanics II., BGBMN2ENND Credit: 4			
Academic year 2010/2017, spring semester			
Programs for which the	ne course is available: basic course of Mechan	Dr. Tiber Code	
Prerequisites: Mechanics L BGBMN1ENND			
Weekly hours: 4	Lecture: 3 Practice: 1 La	h: 0 Consultation:	
Requirements:	exam	et et le constitution.	
Course description:			
This course provides a basic introduction to mechanics, especially to mechanics of deformable bodies; to develop			
confidence and competence in solving problems connected to strength of materials.			
Shedule:			
Week	Торіс		
1.	Fundamentals.		
2.	Introduction to theory of elasticity. Stress state.		
3.	Principle stresses and directions. Mohr's circles.		
4.	Strain state in 3D. Principle strains and directions.		
5	Relation of stress and strain state. Strain energy.		
6	Tension and compression Bar of uniform s	Tension and compression. Bar of uniform strength.	
7	Shearing and hending. Shear stresses in her	uded beam	
7. 0	Deformation stress state and strain energy of bended beam		
0.	Torsion. Twisting of thin welled pipes		
9.	Torsion. Twisting of thin-walled pipes.		
10.	Elastic and plastic buckling.		
11.	Combined loads.		
12.	Sizing for strength.		
13.	The maximum-shear-stress and the distortion-energy theory.		
14.	The theorems of Betti, Maxwell, and Castigliano		
Tasks in semester			
Week	Homewo	orks and test	
3.	Hand out of the 1 st homework	Due date: week 7	
7.	Hand out of the 2 nd homework	Due date: week 12	
10	1 st midterm test: stress states in frames (25	point)	
13. 2 nd midterm test: stress and strain states in frames (25 point)			
Conditions for the signature:			
One must participate in at least 70% of all classes and both homeworks must be solved and submitted. Otherwise			
the semester is invalid. If the quality of the homework does not reach the acceptable level then it must be revised			
and resubmitted before the end of the lecture period. For late submission of the homework extra fee must be paid.			
Two midterm tests must be written. Make up tests are available to students who have missed an in-class exam due			
to illness. The date of make up tests will be announced by the lecturer. The sum of the points of the midterm tests $\frac{1}{2}$			
must be no less than 25 (50%). Otherwise an additional test must be written on one of the first 10 days of the examination period. If the result of the additional test is below 50% than the semaster is involid and no signature			
examination period. I	I the result of the additional test is below 50%	⁶ then the semester is invalid and no signature	
Examination : writing evam (may, 50 point)			
The grade will be established based on the results of the midterm tests and the writing exam Grading policy: 25-			
50 point: fail (1): 51-62 point: pass (2): 63-75 point: satisfactory (3): 76-88 point: good (4), 89-100 point:			
excellent (5).			
Recommended books and notes:			
Dietmar Gross, Werner Hauger, Jörg Schröder, Wolfgang A. Wall, Javier Bonet: Engineering Mechanics 2:			
Mechanics of Materials, Springer (2011)			

Date: 09. January, 2017.

subject leader